1. 5.9 高级处理-合并
1.1. 学习目标
- 应用pd.concat实现数据的合并
- 应用pd.merge实现数据的合并
如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析
1.2. 1 pd.concat实现数据合并
- pd.concat([data1, data2], axis=1)
- 按照行或列进行合并,axis=0为列索引,axis=1为行索引
比如我们将刚才处理好的one-hot编码与原数据合并
# 按照行索引进行
pd.concat([data, dummies], axis=1)
1.3. 2 pd.merge
1.3.1. 2.1 api介绍
- pd.merge(left, right, how='inner', on=None)
- 可以指定按照两组数据的共同键值对合并或者左右各自
left
: DataFrameright
: 另一个DataFrameon
: 指定的共同键- how:按照什么方式连接
Merge method | SQL Join Name | Description |
---|---|---|
left |
LEFT OUTER JOIN |
Use keys from left frame only |
right |
RIGHT OUTER JOIN |
Use keys from right frame only |
outer |
FULL OUTER JOIN |
Use union of keys from both frames |
inner |
INNER JOIN |
Use intersection of keys from both frames |
1.3.2. 2.2 pd.merge合并案例
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
# 默认内连接
result = pd.merge(left, right, on=['key1', 'key2'])
- 左连接
result = pd.merge(left, right, how='left', on=['key1', 'key2'])
- 右连接
result = pd.merge(left, right, how='right', on=['key1', 'key2'])
- 外链接
result = pd.merge(left, right, how='outer', on=['key1', 'key2'])
1.4. 3 总结
- pd.concat([数据1, 数据2], axis=**)【知道】
- pd.merge(left, right, how=, on=)【知道】
- how -- 以何种方式连接
- on -- 连接的键的依据是哪几个